Panel A: Disruption Prevention, Avoidance, and Mitigation Physics |
Author(s) |
Whitepaper Title |
Cross‑cutting Panel(s) |
J. W. Berkery, S. A. Sabbagh,
and Y. S. Park |
Disruptivity Reduction Research
on NSTX-U, Including Characterization of Causes and Use of Kinetic Stability
Theory Models | |
Allen H. Boozer |
Studies of Halo and Relativistic Electron Current | |
Boris Breizman |
Runaway Electrons | |
Dylan Brennan, Chang Liu, and
Allen Boozer |
Toward Understanding Runaway
Electron Generation in Disruptions | |
Dylan Brennan, Andrew Cole, and
John Finn |
Looking Forward in Disruption
Avoidance via Stability Analyses and Control | |
S. A. Galkin |
Role of Magnetic Flux
Conservation, Plasma Surface Current and TMHD in Disruption Simulations | |
Alan H. Glasser, Z. R. Wang, and
J.-K. Park |
Resistive DCON and Beyond | |
R. G. Granetz |
Runaway Electron Threshold
Discrepancy in Tokamaks | |
D. Humphreys |
A Critical Role for Theory,
Computational Models, and Simulations in Transients | |
V. A. Izzo |
Development of Validated
Predictive Simulations for Disruption Mitigation | |
S. C. Jardin |
Proposed New Initiative in
Disruption Modeling | |
Egemen Kolemen and Alan H.
Glasser |
Real-Time Parallel DCON for
Feedback Control of ITER Profile Evolution | |
S. E. Kruger |
Computational Limits to
Disruption Prediction | |
K. J. McCollam, D. J. Den
Hartog, C. M. Jacobson, J. A. Reusch, J. S. Sarff, and the MST Team, |
Validating Extended MHD Models
for Fusion Plasmas | C |
Abraham Sternlieb |
The Liquid Lithium Wall/Divertor
Pathway to Fusion Energy | |
Vladimir Svidzinski |
Parallelization and Further
Development of Stability Code MARS | |
F. Turco, C. Paz-Soldan, J.M.
Hanson, G. Navratil, A. Turnbull |
Measuring and Modeling the
Approach to Instability in the ITER Baseline Scenario (and Beyond) | |
Z. R. Wang, J. E. Menard, Y. Q. Liu, and J.-K. Park |
The Drift Kinetic and Rotational
Effects on Determining and Predicting the Macroscopic Magnetohydrodynamic
Instability | |
Leonid E. Zakharov and Calin V.
Atanasiu |
Thin Wall Model for Disruption
Simulations in the Presence of Sources and Sinks | |
Leonid E. Zakharov |
Tokamak MHD (TMHD) Model of VDE
Disruptions: Theory/Simulation Aspects | |
Return to top |
Panel B: Plasma Boundary Physics
|
Author(s) |
Whitepaper Title |
Cross-cutting Panel(s) |
N. Bertelli, D. L. Green, D.
D'Ippolito, J. Myra, C. K. Phillips, E. J. Valeo, and J. C. Wright |
Integrating RF Power into
Scrape-off-Layer Plasma Simulation | |
M. W. Bongard, R. J. Fonck, G.
R. McKee, J. A. Reusch, and D. R. Smith |
Multi-Scale Validation of
Nonlinear ELM Physics and Simulations | |
D. Curreli, J. P. Allain, D.
Andruczyk, and D. N. Ruzic |
Large-Scale Integrated Modeling
of Plasma Boundary and Plasma- Material Interactions | |
D. A. D'Ippolito and J. R. Myra |
ICRF-Edge and Surface
Interactions | |
M. Dorf, M. Dorr, J. Hittinger,
T. Rognlien, P. Colella, P. Schwartz, R. Cohen, and W. Lee |
Modeling Edge Plasma with the
Continuum Gyrokinetic Code COGENT | C |
A. H. Hakim, G. W. Hammett, and
F. Jenko |
Progress and Challenges in
Plasma Boundary Simulations: Opportunities for Improved Algorithms | CD |
D. R. Hatch, M. Kotschenreuther,
S. Mahajan, and P. Valanju |
Gyrokinetic Pedestal Transport
Studies | |
F. Jenko, A. Bañón Navarro, T. Carter, G. W. Hammett, D. R. Hatch, T. Neiser, and D. Told |
Towards a Truly Predictive
Capability: Ab initio Models for the Plasma Boundary | DE |
M. Kotschenreuther, S. Mahajan,
B. Covele, and P. Valanju |
Implications of Small SOL widths
on Tolerable ELM Size and ELM Tungsten Sputtering | |
M. Kotschenreuther, S. Mahajan,
and P. Valanju |
Cumulative Integrated
Performance on ITER that allows Q=10 | C |
Jeremy Lore, Ilon Joseph, and
Oliver Schmitz |
Addressing the Need for Fluid
Plasma Boundary Modeling | |
Chris McDevitt, Zehua Guo, and
Xianzhu Tang |
Impact of Turbulent Transport on
Macrodynamics via Plasma Current Modification | |
J. R. Myra and D. A. D'Ippolito |
Understanding the SOL:
Fundamental Physics Challenges | |
A. Y. Pankin, S. E. Kruger, J.
R. Cary, J. R. King, A. Hakim, A.Y. Pigarov, A. H. Kritz, and T. Rafiq |
Importance of Coupling of
Plasma, SOL and Wall Regions for Plasma Boundary Problems | |
Scott Parker and C. S. Chang |
First Principles Integrated
Simulation of Boundary Multi Physics Using PIC Method | |
U. Shumlak and D. A. Sutherland |
Need for Simulating
Plasma-Neutral Dynamics | |
V. Sizyuk and A. Hassanein |
Integrated Modeling and
Simulation of Edge and SOL Phenomena to Predict Performance of Plasma-Facing
and Nearby Components | |
R. D. Smirnov, S. I.
Krasheninnikov, and A. Yu. Pigarov |
Plasma-Wall Interactions Can
Turn Magnetic Fusion to Dust | |
David Smithe |
Multi-physics of RF, Antennas, the SOL, and the Walls | D |
W. M. Stacey |
Whitepaper for DOE-OFES
Integrated Simulation Boundary Workshop | |
Daren Stotler, Predrag Krstic,
and Igor Kaganovich |
Integrated, Multi-Scale
Plasma-Material Interface Simulation | CDF |
Xianzhu Tang, Zehua Guo, and
Scott Hsu |
Feedback of Plasma-Materials
Interaction on Scrape-Off Layer Plasmas | |
Graham M. Wright |
The Challenge of Surface and
Materials Model Validation in a Tokamak | |
S. J. Wukitch |
RF Sustainment Simulation
Opportunities for Steady State Fusion Reactor Plasmas | |
Xueqiao Xu |
Develop a Validated Predictive
Modeling Capability for ELMs | D |
Leonid E. Zakharov |
Fusion (?) Energy (??) Science
(???) and its Gaps and Integration | |
Return to top |
---|
Panel C: Whole Device Modeling (WDM) |
Author(s) |
Whitepaper Title |
Cross-cutting Panel(s) |
N. Bertelli, D. Green, C. K.
Phillips, E. J. Valeo, and J. C. Wright |
A Mode of Interoperability with
the ITER IMAS | |
N. Bertelli, D. Green, C. K.
Phillips, E. J. Valeo, and J. C. Wright |
The Role of RF Source Components
in a Whole Device Model | |
Allen H. Boozer |
Integrated Simulations | |
J. D. Callen, J. M. Canik, N. M.
Ferraro, H. Frerichs, C. C. Hegna, E. D. Held, S. C. Jardin, S. E. Kruger, B.
C. Lyons, J. J. Ramos, O. Schmitz, and C. R. Sovinec |
Unifying Modeling of Tokamak Plasmas | |
J. Candy and E. Belli |
Emphasis on Reduced Models for
Integrated Modeling | D |
J. M. Canik |
Whole Device Modeling can
Facilitate Validation Efforts in Boundary Physics | |
J. R. Cary for the FACETS team |
The FACETS project: an approach
to multiscale modeling by an interdisciplinary team | D |
J. R. Cary |
Whole-device modeling
capability: issues and future | G |
Guoyong Fu and Zhihong Lin |
Integrated Simulations of
Energetic Particle Transport in Burning Plasmas | AD |
D. L. Green, D. B. Batchelor, J.
M. Canik, W. R. Elwasif, D. E. Bernholdt, N. Bertelli, C. Holland, and J. M.
Park |
Next Steps in Whole Device
Modeling | |
D. L. Green and J. M. Park |
The Role of HPC &
First-Principles Simulation in Whole-Device-Modeling | |
W. Guttenfelder |
First-Principles Simulations and
Reduced Models for Core Turbulent Transport | |
Robert Hager, S. Ku, J. Lang and
C. S. Chang |
First-Principles Whole Device
Modeling of Fusion Plasma on Extreme Scale Computers, in collaboration with
ASCR scientists | |
G. W. Hammett |
Overall Motivation for Fusion
Integrated Simulations: Developing Improved Fusion Power Plants | B |
G. W. Hammett |
A Modular Approach to
First-Principles Whole-Device Integrated Simulations | BDF |
R. W. Harvey, Yu. V. Petrov, R.
H. Cohen, and M. Dorf |
4 ½ D Fokker-Planck Transport
Project | B |
R. J. Hawryluk, S. Ethier, B.
Grierson, A. Hakim, S. Jardin, S. Kaye, and F. Poli |
Role and Requirements for Whole
Device Modeling | DEFG |
C. Holland and W. Guttenfelder |
The Role of Massively Parallel
Computing in Developing a Practical, Maximally Impactful Validated Predictive
Modeling Capability | DG |
C. Holland, W. Guttenfelder, and
G. McKee |
A National Validation Initiative
for Guiding Predictive Model Development | ABDEFG |
Tom Jarboe |
The Need for Computational
Centers that Validate Using Small Experiments | |
F. Jenko, A. Banñon Navarro, T.
Carter, G. W. Hammett, D. R. Hatch, H. Mynick, M. J. Pueschel, P.W. Terry,
and D. Told |
Towards a Truly Predictive
Capability: Recent Progress and Next Steps in Core Gyrokinetics | DE |
Arnold Kritz, Tariq Rafiq, and
Alexei Pankin |
Goals and Challenges Associated
with Whole Device Modeling | |
Mike Mauel, Jay Kesner, and
Barrett Rogers |
Axisymmetric, High-β,
Steady-State Plasma Torus: A "Wind-Tunnel" to Develop Whole Device Models | D |
G. R. McKee, M. W. Bongard, R.
J. Fonck, D. R. Smith, and Z. Yan |
Advancing Multiscale Fluctuation
Measurement Capability to Validate Integrated Simulations | B |
R. R. Parker, G. M. Wallace and
S. Shiraiwa |
Whole Device Modeling with Novel
Radio-frequency Actuator Schemes in Steady-State Reactor Designs | |
Yu. V. Petov and R. W. Harvey |
Status of the CQL3D-FOW Project | |
F. Poli, D. Battaglia, D. Boyer,
S. P. Gerhardt, J. Menard, and D. Mueller |
The Role of Integrated Modeling
in Disruption Avoidance and Profile Control Devlopment | |
A. H. Reiman, M. R. Dorr, and L.
L. LoDestro |
Development of a Time-Dependent
Transport Code that Can Handle Nonaxisymmetric Magnetic Fields with Islands
and Stochastic Regions, with Application to Disruption Prediction and
Avoidance | ADG |
Eugenio Schuster |
Integrated Modeling Needs for
Plasma Control Design | |
Philip Snyder, John Canik, and
Greg Hammett |
Crossing the Threshold to
Prediction-Driven Research and Device Design | ABDE |
D. A. Spong |
Integrated Whole Device Modeling
as a Target for Optimization | D |
Return to top |
---|
Panel D: Multiphysics and Multiscale Coupling |
Author(s) |
Whitepaper Title |
Cross-cutting Panel(s) |
Mark F. Adams |
Early Exa-Scale Science Opportunity: Edge Plasma Physics | |
Russel Caflisch and Bokai Yan |
Hybrid Methods with Negative
Particles, for Accelerated Simulation of Plasma Kinetics | |
Emil Constantinescu, Jed Brown,
and Barry Smith |
Tightly Coupled, Partitioned
Time-Integration Methods | |
Andrew Davis, Paul Wilson, James
Blanchard, Raluca Scarlat, Carl Sovinec, Oliver Schmitz, and Mario Trujilo |
Multi-Physics Coupled Predictive
Modeling & Simulation of Technology of Fusion Energy Systems | BCFG |
Chris Hansen, Jeff Levesque,
John Schmitt, and Thomas Jarboe |
Flexible MHD Tools for 3D
Boundaries and Resistive Wall Coupling in Fusion Devices | AC |
N. T. Howard and C. Holland |
The Computational Requirements
of Multi-Scale Gyrokinetic Simulation and Its Impact on Modeling of Tokamak
Plasmas | CEF |
Ilon Joseph and François
Waelbroeck |
Theory and Simulation of
Resonant Magnetic Perturbations | BC |
W. W. Lee, E. A. Startsev, S. R.
Hudson, W. X. Wang, and S. Ethier |
A Multiphysics and Multiscale
Coupling of Microturbulence with MHD Equilibria | |
B. W. Ong, M. A. Iwen |
Sensing Multiscale Structures in
High-Dimensional Data | |
Abani Patra, P. Bauman, and V.
Chandola |
Efficient Modeling and UQ with
Reusable Tools | EFG |
Bobby Philip |
Mathematical Design of
Multi-domain Multi-physics Frameworks | CG |
J. Shadid, Cyr, Lin, Pawlowski,
Phillips, Tuminaro, Wildey, L. Chacon |
Whitepaper for DOE Workshop on
Integrated Sim. for Magnetic Fusion Energy Sci. Topic D: Multiphysics and
Multiscale Coupling. | |
Carl Sovinec, Dylan Brennan,
Guoyong Fy, and Valerie Izzo |
Computational Challenges of
Integrated Simulations for Disruption Studies | G |
D. R. Reynolds, R. Samtaney, A.
Sandu, M. Tokman, and C. S. Woodward |
Advanced Time Integration for
Magnetic Fusion | |
Phil Colella and Brian Van Straalen |
Convergence Properties of Particle-In-Cell Methods | |
Return to top |
Panel E: Beyond Interpretive Simulations ('outer loop' issues) |
Author(s) |
Whitepaper Title |
Cross-cutting Panel(s) |
Tan Bui-Thanh |
Scalable Uncertainty
Quantification Algorithms for Truly Predictive Integrated Simulations in
Magnetic Fusion Energy Sciences | |
Yanzhao Cao |
Break the Curse of High
Dimensionality and Low Accuracy: Efficient and High Order Numerical Methods
for Nonlinear Filtering Problems | |
Howard C. Elman |
White Paper for Discussion on
Uncertainty Quantification in Integrated Simulations for Magnetic Fusion
Energy Sciences | |
M. Grigoriu |
Extremes of Solutions of
Stochastic Equations | |
Robert D. Moser and Varis Carey |
Applications of Uncertainty
Quantification to Models of Magnetically Confined Plasmas | |
Habib Najm and Omar Knio |
Uncertainty Quantification in
Computational Models of Fusion Systems | F |
Cosmin G. Petra, Sanjay
Mehrotra, Mihai Anitescu, and Emil Constantinescu |
Robust Decision Making for
Magnetic Fusion in the Presence of Model Errors | |
Adrian Sandu and Alireza
Haghighat |
Uncertainty Quantification and
Inverse Problems for Fusion Energy Sciences | |
S. P. Smith |
Covariance in Uncertainty
Quantification of Experimental Analyses | |
Laura Swiler, Michael Eldred,
and John Shadid |
Whitepaper Prepared for DOE
Workshop on Integrated Simulations for Magnetic Fusion Energy Sciences Topic
E: Beyond interpretive simulations | |
D. Kouri, D. Ridzal, B. van
Bloemen Waanders, and S. Uryasev |
Optimization Under Uncertainty
for Magnetic Confinement Fusion | |
John Shadid, Tim Wildey, Eric
Cyr, and Paul Constantine |
Enabling Efficient Uncertainty
Quantification Using Adjoint-based Techniques | |
Return to top |
---|
Panel F: Data Management, Analysis, and Assimilation |
Author(s) |
Whitepaper Title |
Cross-cutting Panel(s) |
Suren Byna, Spyros Blanas, and
John Wu |
Automated Rich-Metadata
Management for Integrated Fusion Energy Simulations | |
Jong Choi, Tahsin Kurc, and
Scott Klasky |
Workflow Case Study: Fusion:
Experimental Data Processing Workflow | |
Jong Choi, Tahsin Kurc, and
Scott Klasky |
Workflow Case Study: EPSi Data
Processing Workflow | |
R. M. Churchill, C. S. Chang, S.
Ku, S. Klasky, J. Choi, R. Hager, D. Stotler, J. Lin, and S. Janhunen |
Scientific Knowledge Discovery
in Data-Intensive, Large-Scale Fusion Simulations | B |
D. J. Den Hartog, M. E. Galante,
L. M. Reusch, M. D. Nornberg, and the MST Team |
Integrated Data Analysis to
Expand Measurement Capability | C |
Martin Greenwald, David
Schissel, and John Wright |
An Unmet Need: Documenting
Complex Scientific Workflows - End to End | G |
N. T. Howard |
Data Management and Analysis
Challenges Associated with Validating Multi-Scale Gyrokinetic Simulation of
Experimental Discharges | |
Gerd Heber and Quincey Koziol |
The HDF5 "Value Proposition" for
the Fusion Data Lifecycle | |
O. Meneghini and S. Smith |
Synergistic Opportunities
Between Data Management Tools and Integrated Modeling Frameworks | G |
David Mikkelsen |
Thoughts on Data Management
Tools for Physics Simulation Codes | |
Dmitriy Morozov, Brian van Straalen, Konstantin Mischaikow, E. Wes Bethel |
Topological Dynamics for Fusion Analysis | |
Francesca M. Poli |
On the Visualization of
Simulations | |
John Wu, Scott Klasky, and C. S.
Chang |
A Case for Real-Time Comparative
Analytics | A |
Return to top |
---|
Panel G: Software Integration and Performance |
Author(s) |
Whitepaper Title |
Cross-cutting Panel(s) |
Francesca M. Poli |
On the Separation between
Physics-Oriented Research and ITER-Driven Research and the Role of Software
Performance | |
S. P. Smith and O. Meneghini |
A Sustainable Pathway Towards
Successful Integrated Modeling | C |
Alice Koniges, Shreyas Cholia,
Prabhat, Yushu Yao |
Data and Workflow Solutions for
Fusion Using NERSC | F |
Theresa L. Windus and T. Daniel
Crawford |
The Computational Molecular
Sciences Software Development Community | |
Return to top |
---|